Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quasi-continuous-wave operations of quantum cascade lasers

Identifieur interne : 003A24 ( Main/Repository ); précédent : 003A23; suivant : 003A25

Quasi-continuous-wave operations of quantum cascade lasers

Auteurs : RBID : Pascal:11-0161068

Descripteurs français

English descriptors

Abstract

In this paper, quasi-continuous-wave (quasi-CW) operation of quantum cascade lasers (QCLs) is studied. A group of strain-balanced InGaAs/InAlAs QCLs emitting around λ∼4.8μm were used in the experiment. QCLs were tested at different driving conditions (i.e. pulsed mode, CW mode and quasi-CW mode) at various temperatures. Experimental measurements show that thermal effect plays an important role in deteriorating QCL performance. This is especially true at high temperatures. At low temperature (∼100K), L-I curves with different pulse widths exhibit no significant difference. While at a higher temperature (∼200K), we observed that the longer the pulse width, the lower the roll-over power and the worse the laser performance. At 100K, the roll-over power increases as duty cycle increases until it reaches CW operation, indicating that the thermal generation difference for quasi-CW mode and CW mode is negligible. At 200K, however, a maximum roll-over power is about 50mW at duty cycle of 65% corresponding to a CW roll-over power of 40mW. It reveals that at high temperature, quasi-CW operation generates less heat and more average output power. Therefore, quasi-CW operation is obviously a favorable way to achieve high performance operations at high temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0161068

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quasi-continuous-wave operations of quantum cascade lasers</title>
<author>
<name>XING CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD, 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LIWEI CHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD, 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DINGKAI GUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD, 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choa, Fow Sen" uniqKey="Choa F">Fow-Sen Choa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD, 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Worchesky, Terry" uniqKey="Worchesky T">Terry Worchesky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD, 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiun Yun" uniqKey="Li J">Jiun-Yun Li</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Princeton University</s1>
<s2>Princeton, NJ, 08544</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0161068</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0161068 INIST</idno>
<idno type="RBID">Pascal:11-0161068</idno>
<idno type="wicri:Area/Main/Corpus">003409</idno>
<idno type="wicri:Area/Main/Repository">003A24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gallium Arsenides</term>
<term>High temperature</term>
<term>Indium Arsenides</term>
<term>Output power</term>
<term>Photonics</term>
<term>Pulse width</term>
<term>Quantum cascade laser</term>
<term>Semiconductor lasers</term>
<term>Strains</term>
<term>Temperature effects</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déformation mécanique</term>
<term>Laser semiconducteur</term>
<term>Laser cascade quantique</term>
<term>Haute température</term>
<term>Durée impulsion</term>
<term>Puissance sortie</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Effet température</term>
<term>As Ga In</term>
<term>InGaAs</term>
<term>0130C</term>
<term>42</term>
<term>4255P</term>
<term>Photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, quasi-continuous-wave (quasi-CW) operation of quantum cascade lasers (QCLs) is studied. A group of strain-balanced InGaAs/InAlAs QCLs emitting around λ∼4.8μm were used in the experiment. QCLs were tested at different driving conditions (i.e. pulsed mode, CW mode and quasi-CW mode) at various temperatures. Experimental measurements show that thermal effect plays an important role in deteriorating QCL performance. This is especially true at high temperatures. At low temperature (∼100K), L-I curves with different pulse widths exhibit no significant difference. While at a higher temperature (∼200K), we observed that the longer the pulse width, the lower the roll-over power and the worse the laser performance. At 100K, the roll-over power increases as duty cycle increases until it reaches CW operation, indicating that the thermal generation difference for quasi-CW mode and CW mode is negligible. At 200K, however, a maximum roll-over power is about 50mW at duty cycle of 65% corresponding to a CW roll-over power of 40mW. It reveals that at high temperature, quasi-CW operation generates less heat and more average output power. Therefore, quasi-CW operation is obviously a favorable way to achieve high performance operations at high temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7750</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quasi-continuous-wave operations of quantum cascade lasers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Photonics North 2010 : 1-3 June 2010, Niagara Falls, Canada</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>XING CHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIWEI CHENG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DINGKAI GUO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHOA (Fow-Sen)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WORCHESKY (Terry)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LI (Jiun-Yun)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SCHRIEMER (Henry P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>KLEIMAN (Rafael N.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University of Maryland, Baltimore County</s1>
<s2>Baltimore, MD, 21250</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Princeton University</s1>
<s2>Princeton, NJ, 08544</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Ontario Photonics Industry Network</s1>
<s3>CAN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>775012.1-775012.7</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8241-9</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174727140370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>4 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0161068</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, quasi-continuous-wave (quasi-CW) operation of quantum cascade lasers (QCLs) is studied. A group of strain-balanced InGaAs/InAlAs QCLs emitting around λ∼4.8μm were used in the experiment. QCLs were tested at different driving conditions (i.e. pulsed mode, CW mode and quasi-CW mode) at various temperatures. Experimental measurements show that thermal effect plays an important role in deteriorating QCL performance. This is especially true at high temperatures. At low temperature (∼100K), L-I curves with different pulse widths exhibit no significant difference. While at a higher temperature (∼200K), we observed that the longer the pulse width, the lower the roll-over power and the worse the laser performance. At 100K, the roll-over power increases as duty cycle increases until it reaches CW operation, indicating that the thermal generation difference for quasi-CW mode and CW mode is negligible. At 200K, however, a maximum roll-over power is about 50mW at duty cycle of 65% corresponding to a CW roll-over power of 40mW. It reveals that at high temperature, quasi-CW operation generates less heat and more average output power. Therefore, quasi-CW operation is obviously a favorable way to achieve high performance operations at high temperature.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Strains</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Durée impulsion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Pulse width</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Duración impulso</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Output power</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>42</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Photonique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Photonics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>101</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photonics North 2010</s1>
<s3>Niagara Falls CAN</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003A24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0161068
   |texte=   Quasi-continuous-wave operations of quantum cascade lasers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024